Answer all questions in the booklets provided. Appropriate information and a periodic table are attached.

Question 1 - (14 marks, 2 marks each)

a) Determine the term symbols for states with the angular momentum and spin quantum numbers (L, S) :
i) $(5,2)$
ii) $(2,3 / 2)$
b) Order the following terms from lowest to highest energy:
i) ${ }^{2} \mathrm{D},{ }^{2} \mathrm{~F},{ }^{2} \mathrm{P},{ }^{2} \mathrm{G}$
ii) ${ }^{3} \mathrm{~S},{ }^{4} \mathrm{P},{ }^{1} \mathrm{G},{ }^{2} \mathrm{~F}$
c) Determine the ground-state terms for the following free ions or atoms:
i) Fe^{2+}
ii) N^{3-}
iii) Cl

Question 2 - (11 marks)

a) List all the d-electron configurations for low-spin tetrahedral complexes in which the JahnTeller effect is theoretically possible. (3 marks)
b) Name the following compounds (4 marks)
i) $\mathrm{NH}_{4}\left[\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
ii) $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{ClBr}\right] \mathrm{I}$

Give formulas for the following compounds (4 marks)
iii) triammineaquadichlorocobalt(III) chloride
iv) sodium hexacyanoferrate(III)

Question 3 - (8 marks)

Briefly describe the NMR method of determining the magnetic susceptibility of a complex in solution. (less than 2 pages please)

Question 4 - (11 marks)

The splitting diagram for a linear $\left(\mathrm{AB}_{2}\right)$ ligand field is given below. (The z axis lies along the C_{∞} axis of the molecule).

$$
\ldots \quad+1.02 \Delta
$$

$+0.11 \Delta$
$-\quad-\quad-\quad-\quad-\quad-\quad-\quad$ barycenter
$-\quad-\quad .62 \Delta$

ALL OF THE FOLLOWING QUESTIONS REFER TO THIS SPLITTING DIAGRAM!!

a) Redraw the splitting diagram in your booklets and label the energy levels with the appropriate d orbitals. (5 marks)
b) A given linear AuL_{2} complex containing Au^{3+} has a magnetic moment of $0.00 \mathrm{~B} . \mathrm{M}$. Calculate the ligand-field stabilization energy (LFSE) of this complex using the above splitting diagram. (4 marks)
c) What is the theoretical $\mu_{\text {eff }}$ (in BM) of a high-spin linear d^{6} complex, using the above diagram? (2 marks)

Question 5 - (11 marks)

a) A solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is green and paramagnetic ($\mu_{\text {eff }}=2.90 \mathrm{BM}$), whereas a solution of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is colourless and diamagnetic. Thoroughly explain these observations. (You may want to include diagrams showing the molecular geometry and the d-orbital energy levels of these complex ions as part of your answer). (6 marks)
b) A compound with the empirical formula $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{CN})_{2}$ has a magnetic moment corresponding to $8 / 3$ unpaired electrons per iron. How is this possible? What is the actual molecular formula of this compound? (5 marks)

